If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-8X^2+24=0
We add all the numbers together, and all the variables
-7X^2+24=0
a = -7; b = 0; c = +24;
Δ = b2-4ac
Δ = 02-4·(-7)·24
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42}}{2*-7}=\frac{0-4\sqrt{42}}{-14} =-\frac{4\sqrt{42}}{-14} =-\frac{2\sqrt{42}}{-7} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42}}{2*-7}=\frac{0+4\sqrt{42}}{-14} =\frac{4\sqrt{42}}{-14} =\frac{2\sqrt{42}}{-7} $
| 4*z+1/6=5z+7/6 | | 4+-c=14 | | 3(x+7)^2-(432)=0 | | 5v+2=-2v+9=7 | | 5n+34=-2=14 | | 4(4x+1)=3x-4(6-x)=8 | | 4x+9x-8x=19+1 | | (3x+10)-5x=6x+50 | | 6(x-2)/3=2(x+8)/11 | | 7x3/4=72 | | 7x=30-3x=40 | | (3x)^2+(2x)^2=√117^2 | | 256x^2+81x^2=189 | | 3z²+2z-4=0 | | 12.35+0.08(x+3)=12.85-0.07 | | 3x-5=2.9 | | 18(x-1)=120 | | 8x+77=101 | | Q=1x+4 | | 2(x-5)+6=2(2x+2) | | -4=-14+2p | | x+10(x+2)^0.5-22=0 | | N=0.08r+7,400 | | 10x-24=8x+2 | | -5x+9=-4x+7 | | 256x^2+81x^2=30.25 | | 12.35+0.05(x+3)=12.85-0.07 | | (x-2)^2=x^2 | | 0.14(y-8)+0.18y=0.12y-2.7 | | 2(6y+5)-12y=10 | | 4.5=18-4.5k | | 4.8=3(x-9) |